
Магнитная гипертермия играет все более важную роль в лечении онкозаболеваний, особенно в случаях значительных ограничений применения хирургического вмешательства и медикаментозного воздействия, например при терапии нейробластомы головного мозга. В область раковой опухоли инвазивным или неинвазивными методами вводят наноразмерные магнитные частицы, которые под воздействием переменного магнитного поля нагревают окружающую область новообразования до 40–44°С, вызывая ее некроз, апоптоз или повышенную восприимчивость к химио- и лучевой терапии.
В настоящее время коммерчески доступные наночастицы магнетита для гипертермии производят химическими методами или восстановлением из газовой фазы (CVD), что нередко приводит к неоднородностям в свойствах полученного вещества. В результате химически синтезированные и CVD наночастицы магнетита часто имеют поликристаллическую структуру, а также различные включения и фазы, что снижает намагниченность насыщения из-за так называемого магнитного мертвого слоя на поверхности частиц и как следствие ухудшает нагревательную способность.
«Перспективный метод ультразвуковой механо-кавитационного разрушения позволяет получить однородные наночастицы магнетита с идеальной кристаллической структурой исходного макроскопического образца или порошка, с химически чистой поверхностью и высокой намагниченностью насыщения, равной 92 emu/g, что близко к теоретическому значению для чистого магнетита», — отмечает автор исследования к.т.н. Василий Баутин, доцент кафедры металлургии стали, новых производственных технологий и защиты металлов НИТУ МИСИС. Подробно ознакомиться с технологией можно в научном журнале Ceramics International (Q1).
Дальнейшая реализация исследований и производства частиц планируется совместно с научным дивизионом Госкорпорации «Росатом» — АО «Наука и инновации» и МГМУ им. И.М. Сеченова Минздрава России.